33 research outputs found

    MSC: A Dataset for Macro-Management in StarCraft II

    Full text link
    Macro-management is an important problem in StarCraft, which has been studied for a long time. Various datasets together with assorted methods have been proposed in the last few years. But these datasets have some defects for boosting the academic and industrial research: 1) There're neither standard preprocessing, parsing and feature extraction procedures nor predefined training, validation and test set in some datasets. 2) Some datasets are only specified for certain tasks in macro-management. 3) Some datasets are either too small or don't have enough labeled data for modern machine learning algorithms such as deep neural networks. So most previous methods are trained with various features, evaluated on different test sets from the same or different datasets, making it difficult to be compared directly. To boost the research of macro-management in StarCraft, we release a new dataset MSC based on the platform SC2LE. MSC consists of well-designed feature vectors, pre-defined high-level actions and final result of each match. We also split MSC into training, validation and test set for the convenience of evaluation and comparison. Besides the dataset, we propose a baseline model and present initial baseline results for global state evaluation and build order prediction, which are two of the key tasks in macro-management. Various downstream tasks and analyses of the dataset are also described for the sake of research on macro-management in StarCraft II. Homepage: https://github.com/wuhuikai/MSC.Comment: Homepage: https://github.com/wuhuikai/MS

    A2-RL: Aesthetics Aware Reinforcement Learning for Image Cropping

    Full text link
    Image cropping aims at improving the aesthetic quality of images by adjusting their composition. Most weakly supervised cropping methods (without bounding box supervision) rely on the sliding window mechanism. The sliding window mechanism requires fixed aspect ratios and limits the cropping region with arbitrary size. Moreover, the sliding window method usually produces tens of thousands of windows on the input image which is very time-consuming. Motivated by these challenges, we firstly formulate the aesthetic image cropping as a sequential decision-making process and propose a weakly supervised Aesthetics Aware Reinforcement Learning (A2-RL) framework to address this problem. Particularly, the proposed method develops an aesthetics aware reward function which especially benefits image cropping. Similar to human's decision making, we use a comprehensive state representation including both the current observation and the historical experience. We train the agent using the actor-critic architecture in an end-to-end manner. The agent is evaluated on several popular unseen cropping datasets. Experiment results show that our method achieves the state-of-the-art performance with much fewer candidate windows and much less time compared with previous weakly supervised methods.Comment: Accepted by CVPR 201

    YOLOrtho -- A Unified Framework for Teeth Enumeration and Dental Disease Detection

    Full text link
    Detecting dental diseases through panoramic X-rays images is a standard procedure for dentists. Normally, a dentist need to identify diseases and find the infected teeth. While numerous machine learning models adopting this two-step procedure have been developed, there has not been an end-to-end model that can identify teeth and their associated diseases at the same time. To fill the gap, we develop YOLOrtho, a unified framework for teeth enumeration and dental disease detection. We develop our model on Dentex Challenge 2023 data, which consists of three distinct types of annotated data. The first part is labeled with quadrant, and the second part is labeled with quadrant and enumeration and the third part is labeled with quadrant, enumeration and disease. To further improve detection, we make use of Tufts Dental public dataset. To fully utilize the data and learn both teeth detection and disease identification simultaneously, we formulate diseases as attributes attached to their corresponding teeth. Due to the nature of position relation in teeth enumeration, We replace convolution layer with CoordConv in our model to provide more position information for the model. We also adjust the model architecture and insert one more upsampling layer in FPN in favor of large object detection. Finally, we propose a post-process strategy for teeth layout that corrects teeth enumeration based on linear sum assignment. Results from experiments show that our model exceeds large Diffusion-based model
    corecore